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Abstract Although recurrent Herpes simplex virus type 1
(HSV-1) infections are quite common in humans, little is
known about the exact molecular mechanisms involved in
latency and reactivation of the virus from its stronghold, the
trigeminal ganglion. After primary infection, HSV-1 estab-
lishes latency in sensory neurons, a state that lasts for the life
of the host. Reactivation of the virus leads to recurrent disease,
ranging from relatively harmless cold sores to ocular herpes. If
herpes encephalitis—often a devastating disease—is also
caused by reactivation or a new infection, is still a matter of
debate. It is widely accepted that CD8+ T cells as well as host
cellular factors play a crucial role in maintaining latency. At
least in the animal model, IFNγ and Granzyme B secretion
of T cells were shown to be important for control of viral
latency. Furthermore, the virus itself expresses factors that
regulate its own latency–reactivation cycle. In this regard,
the latency associated transcript, immediate–early proteins,
and viral miRNAs seem to be the key players that control
latency and reactivation on the viral side. This review fo-
cuses on HSV-1 latency in humans in the light of mecha-
nisms learned from animal models.
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Introduction

Herpes simplex virus type 1 (HSV-1) is a large, double-
stranded DNA virus which encodes for more than 80 pro-
teins. Primary infection in humans usually occurs in the oral
cavity during childhood. There, the virus replicates within
the epithelial cells and undergoes its typical lytic life cycle
with successive production of immediate early (IE), early,
and late genes followed by production of infectious virions
and lysis of the host cell.

Eventually, sensory nerve fibers feeding the site of inoc-
ulation, usually sensory neurons belonging to the maxillary
and mandibular branch of the trigeminal ganglion (TG), are
infected with the virus which then travels to the cell body of
the neurons via retrograde transport. There, HSV-1 estab-
lishes lifelong latency (Baringer and Swoveland 1973), a
state characterized by the existence of a functional viral
genome without the production of infectious virus. During
this time, the latency-associated transcripts (LATs) (Stevens
et al. 1987) are the only prominent transcripts. It is still a
matter of debate, if functional peptides or proteins originate
from this transcript (Henderson et al. 2009). In latently
HSV-1-infected TG, an abundant infiltration of cytokine-
and chemokine-producing T cells is present (Theil et al.
2003a), most of them belonging to the CD8+ compartment.
Latency is believed to be controlled by LAT, infiltrating
CD8+ T cells and cellular control factors. Upon spontaneous
reactivation, caused by different triggers like diseases,
stress, and exposure to bright sunlight, the virus travels back
to the peripheral tissue via anterograde transport, where it
causes recurrent disease or asymptomatic shedding of the
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virus. The mechanisms of axonal transport of HSV-1 are the
subject of extensive research (Diefenbach et al. 2008;
Huang et al. 2010; Antinone et al. 2010).

The difficulties in the investigation of HSV-1 infec-
tions in humans lie in the neuronal cell-tropism of HSV-
1. Neuronal tissue is not accessed easily and thus can
only be obtained from cadavers. Therefore, most of the
facts we know about HSV-1 latency are derived from
small animal models of infection, most commonly, the
mouse. This is a useful tool, as different virus and
animal strains can be studied and the host as well as
the virus can be genetically engineered. Specific genes
can be deleted or altered, and the effect on lytic and
latent infection as well as reactivation can be studied in
vivo and ex vivo. However, to actually infect mice,
very high titers of HSV-1 are needed and HSV-1 is
usually not spontaneously reactivating as it does in
humans. As opposed to mice, in humans, co-infection
with other viruses like the α-herpesviruses HSV-2 and
varicella-zoster virus (VZV) is a common observation
(Theil et al. 2003b). Also, as HSV-1 is highly adapted to
its human host, co-evolution of host and virus cannot be
studied in the mouse model. Therefore, it is an important
matter to investigate whether observations made in animal
models are mirrored in HSV’s natural host.

Primary infection and establishment of latency

After a period of lytic replication in epithelial cells, HSV-1
enters the endings of sensory neurons and travels via retro-
grade transport to the sensory ganglia. In the mouse model, it
is known that the arrival of the virus in the TG is followed by a
short phase of increase in virus titers during which infectious
virus can be detected in the TG (Liu et al. 1996). It is not clear
if transfer of virus occurs from neuron to neuron or if
multiple neurons become infected. As latent virus is only
detected in the division of the TG where the respective
innervating nerves from the site of infection project (Hüfner
et al. 2009), it can be assumed that free viral particles are not
abundantly produced in the human TG.

It is important to the host to control the initial replication
of the virus, as it has been shown that there is a positive
correlation between the extent of viral replication, the
amount of latent genomes in the ganglia, and reactivation
frequency (Thompson and Sawtell 2000; Sawtell et al.
1998; Sawtell 1998). An important role in controlling initial
replication has been attributed to the innate immune system.
Major viral replication in the TG occurs within days 3 to 5
after infection when adaptive immune responses are still
developing. The initial immune infiltration in the TG con-
sists of macrophages, natural killer cells, and γδ T cells (Liu
et al. 1996; Shimeld et al. 1995). Later, from day 7 and on,

the immune infiltrate is predominated by CD8, Mac-1, and
tumor necrosis factor (TNF)-expressing cells (Liu et al.
1996) and expression of TNF-α, IFN-γ, IL-10, and CCL5
can be measured (Halford et al. 1996). Infiltration of CD8+

T cells is concurrent with elimination of viral replication,
and depletion of CD8+ T cells leads to impairment of viral
clearance (Simmons and Tscharke 1992). In humans, noth-
ing is known about the events during early viral replication
in the TG upon primary infection. As usually no sensory
deficit is associated with primary infection, it might be
assumed that neurons are either not killed by replicating
virus or that viral replication does not occur. Also, in mice,
apoptosis of neurons during initial infection is not observed
(Esaki et al. 2010).

Establishment of viral latency seems to be quite indepen-
dent from the immune system, since HSV-1 can establish
latency in TG of mice lacking an innate and adaptive im-
mune system (Ellison et al. 2000). Viral DNA entering the
nucleus of its host cell immediately circularizes and asso-
ciates with histones. In unstressed neurons, HCF1, which is
needed for induction of viral IE-gene expression by VP16, is
present in the cytoplasm, but not in the nucleus like in non-
neuronal cells. In the absence of the VP16/HCF1/Oct1
complex, the viral genome remains associated with histones
and the HDAC/CoREST/LSD1/REST repressor complex
blocks activation of ß-genes. The viral genome is thereby
silenced (Roizman 2011). There is no evidence that estab-
lishment of latency is actively regulated by the virus itself as
no viral gene product is required (Wagner and Bloom 1997).
Hence, latent infection seems to be the result of failure to
enter the lytic cascade.

HSV-1 latency

Localization of latent HSV

Around 52% to 84% of the human population is latently
infected by HSV-1 (Pebody et al. 2004). Persistence and
latency have been demonstrated in human TG, facial gan-
glia, vestibular ganglia, geniculate ganglia, and the brain
(Croen et al. 1987; Furuta et al. 1992, 1993; Theil et al.
2001, 2002; Hüfner et al. 2007; Verjans et al. 2007; Arbusow
et al. 2010; Sanders et al. 1996). Nevertheless, the main
site of latency and reactivation in humans seems to be the
TG. It has been shown that the serostatus of infected indi-
vidual correlates with occurrence of HSV-1 in the TG
(Croen et al. 1987; Verjans et al. 2007). LAT is abundantly
expressed in maxillary and mandibular divisions of the TG
but almost absent in the ophthalmic division (Hüfner et al.
2009). This indicates that the virus infects neurons by en-
tering axons that innervate the oral mucosa rather than by
entering neurons in the TG.
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In situ hybridization for LAT and also HSV-1 DNA
revealed that neuronal nuclei are the major site of HSV-1
latency (Stevens and Cook 1971; Baringer and Swoveland
1973; Cook et al. 1974; Theil et al. 2003a, b). The number
of infected neurons per human TG ranges from 1.3% (Held
et al. 2011) to 3% (Cai et al. 2002), with most neurons
containing less than 20 copies of the viral genome (Cai et
al. 2002; Wang et al. 2005a; Held et al. 2011). Recently, it
has been demonstrated in mice that HSV-1 preferably
establishes latency in A5+ neurons whereas HSV-2 pre-
fers KH10+ neurons (Margolis et al. 2007b; Imai et al.
2009). This finding has not been reproduced in human TG
so far.

Viral transcription

Latency of HSV-1 is defined as retention of a functional
viral genome without production of viral particles. During
this latency period, viral transcription is basically limited to
the LATs. It was long believed that, besides the LATs, there
is no viral transcription during latency. As no protein had
been associated with the 2-kb LAT, the major gene product
during latency, HSV-1, was considered to hide from the
immune system by limiting its gene expression. However,
more recent studies showed minimal expression of other
viral genes than LAT. Viral transcripts were identified in
latently infected human (Derfuss et al. 2007; Held et al.
2011) and mouse TG (Kramer and Coen 1995; Chen et al.
1997, 2002a (197/id); Feldman et al. 2002). Even viral
protein was detected in mice (Feldman et al. 2002; Sawtell
2003; Margolis et al. 2007a). In humans, only immediate
early transcripts (ICP0 and ICP4) were detected whereas
late proteins could only be found in productively infected
brains of herpes encephalitis cases. In mouse TG, late pro-
teins could also be identified (Feldman et al. 2002; Sawtell
2003; Margolis et al. 2007a).

Control of latency by the immune system

It is commonly known that immunosuppression leads to
reactivation and severe HSV infections in humans
(Montgomerie et al. 1969; Naraqi et al. 1977). Stress,
known to be a stimulus for HSV-1 reactivation, was shown
to induce immunosuppression (Pereira et al. 2003; revieved
in Sainz et al. 2001). Also, in mice, psychological stress by
disruption of social hierarchy within mouse colonies (Padgett
et al. 1998) or restraint (Bonneau 1996; Freeman et al. 2007)
caused immunosuppression and induced reactivation.

The effects of immunosuppression on reactivation and
disease severity imply a role of the immune system in
control of HSV-1. Actually, a persisting immune cell infil-
tration accompanied by cytokines and chemokines has been
shown to occur in latently HSV-1-infected sensory ganglia

in mice (Shimeld et al. 1995; Cantin et al. 1995; Halford et
al. 1996) and also in humans (Theil et al. 2003a).

Characterization of immune infiltrates in the TG

Characterization of human TG infiltrates is mostly done by
descriptive immunohistochemical studies at time of death of
the host. Immune infiltrates in latently HSV-1-infected hu-
man TG have been characterized to consist primarily of
CD3+ T cells belonging to the CD8+ subset as well as some
CD68+ macrophages. Only few CD4+ T cells can be found
surrounding neuronal cell bodies; most CD4+ T cells are
spread among the axons. In TG not infected with HSV-1,
only scattered CD3+ T cells can be found (Theil et al.
2003a). Derfuss et al. (2007) have shown that the majority
of infiltrating T cells possesses an effector memory pheno-
type as they express CCR5 and CXCR3 as well as the
corresponding ligands CCL5 and CXCL10. These receptors
and their ligands are important for migration of T cells into
the CNS and are known to be expressed on memory effector
CD8+ T cells. In addition, the voltage-gated potassium chan-
nel KV1.3 was expressed on many infiltrating Tcells. The late
effector memory phenotype of the CD8+ T cell infiltrates in
human TG has also been described by Verjans et al. (2007).
Many CD8+ T cells were positive for CD69, a marker for
recent activation. Further characterization of surface molecules
by fluorescence activated cell sorting of isolated T cells showed
that TG resident CD8+ T cells are CD45RA−RO+

CD28−CD27−. Naïve T cells express CD45RA, which is
downregulated after Ag contact when T cells become
CD45RO-positive. CD28 and CD27 are co-stimulatory mol-
ecules that are downregulated after antigen stimulation.
Furthermore, no expression of lymph node homing recep-
tors CCR7 and CD62L could be found. These features
indicate recent activation of the T cells by antigens.

In the mouse model of latent HSV-1 infection, ex-
pression of Granzyme B is thought to be a marker for
HSV-1 specificity and ongoing activation by the chronic
stimulation of T cells in latently infected mouse TG
(van Lint et al. 2005). Expression of Granzyme B in
human TG infiltrating T cells has been shown on a subset
of CD8+ T cells (Derfuss et al. 2007; Verjans et al. 2007).
Although most CD8+ T cells present in the TG show
markers of activation, only few also express Granzyme B.
It was therefore proposed that most T cells are unspecific
bystander T cells, attracted by the inflammatory milieu and
entering the TG only due to their activation status. Entry of
T cells into the TG due to activation has also been described
in mice (van Lint et al. 2005), but an accumulation of HSV-
1-specific T cells over time was also demonstrated (Khanna
et al. 2003).

The infiltrating T cells possess clonally expanded T cell
receptor (TCR) β-chains (Derfuss et al. 2007) and TCRγ-
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loci (Verjans et al. 2007) indicating proliferation of these T
cells to their respective antigens. Furthermore, using T cell
lines from cultured TG obtained very shortly after death,
Verjans et al. (2007) were able to demonstrate that the TG
resident T cells were reactive against HSV-1 proteins.

Tissue-infiltrating T cells in human TG are mainly
found in clusters surrounding neurons (Derfuss et al.
2007). Surprisingly, most neurons surrounded by T cells are
not positive for LAT and HSV-1 DNA (Held et al. 2011).
These neurons, devoid of HSV-1 but surrounded by T cells,
might present foci of former reactivation from which the
virus has been cleared. Several studies showed that tissue-
resident memory CD8+ T cells remain in skin and mucosa
long after clearance of HSV-2 (Gebhardt et al. 2009; Zhu et
al. 2007). In mice, most LAT+ neurons were also found to be
free of associated inflammatory cells (Feldman et al. 2002).
T cells were only clustered around spontaneously reacti-
vated neurons.

Cytokine and chemokine expression in TG

In addition to the cellular immune infiltrates, an abun-
dant expression of cytokines and chemokines was ob-
served in human and mouse TG latently infected with
HSV-1. A significant induction of the anti-viral effectors
IFN-γ, TNF-α, and CXCL10 (IP-10) as well as CCL5
(RANTES)—a chemokine involved in recruitment of T
cells—could be observed in latently HSV-1-infected hu-
man TG (Theil et al. 2003a). Halford et al. (1996) de-
scribed a persistent expression of the T cell-associated
cytokine and chemokine mRNAs IL-2, IL-10, IFN-γ, and
RANTES in latently infected mouse TG, indicating that the
local lymphocytes encounter viral antigen during HSV-1
latency with sufficient frequency to remain activated. It
was assessed in the mouse model that neither viral replica-
tion nor reactivation, or LAT expression in ganglia is re-
quired for this persistent elevated cytokine expression (Chen
et al. 2000).

Expression of MHC class I in TG

Persistent retention of activated CD8+ T cells in sensory
ganglia raises the question if infected neurons do express
major histocompatibility complex (MHC) class I. It was
shown that MHC class I expression by neurons is inducible
by IFN (Neumann et al. 1995). Moreover, an induction of
MHC class I expression on Schwann and satellite cells has
been described for HSV-1 lytic infection in mouse TG
(Pereira et al. 1994). In humans, a strong inflammatory
milieu such as in multiple sclerosis lesions was also shown
to upregulate MHC class I on neurons (Hoftberger et al.
2004). It also has been proposed that the neuron supporting

satellite cells function as antigen-presenting cells (van Velzen
et al. 2009).

Functions of tissue-infiltrating T cells

In animal models, functional studies on tissue-infiltrating T
cells are obviously more feasible than in humans. Therefore,
most knowledge on how these T cells act on HSV-1 latency is
derived from themouse. It has been shown that the local CD8+

T cells can keep HSV-1 from reactivating in mouse TG ex
vivo cultures in a dose-dependent, antigen-specific, and
MHC-restricted fashion (Liu et al. 2000; Khanna et al.
2003). This effect was shown to be mediated by IFN-γ
(Liu et al. 2001) and Granzyme B (Knickelbein et al.
2008). In the mouse model with a C57Bl6 background,
about 50% of TG infiltrating CD8+ T cells recognizes the
immuno-dominant epitope gB498-505 (Khanna et al. 2003).
Still, the vast majority of CD8+ T cells in latently infected
mouse TG are specific for HSV-1. The subdominant epito-
pes mostly belong to early or late gene products expressed
before viral DNA synthesis (Sheridan et al. 2009; St Leger
et al. 2011). The target antigen of CD8+ T cells in latently
HSV-1-infected human TG still has to be resolved. The
major target for human blood-derived CD8+ T cells is de-
scribed to be the early gene product ICP27 whereas the late
proteins gD and gB are key targets for blood-derived CD4+

T cells in most patients (Mikloska and Cunningham 1998).
A disparity between TG-infiltrating and blood-derived T
cells could be expected as it has been shown that in mice
there is no replenishment of TG resident T cells from the
periphery (Himmelein et al. 2011).

Even though infiltrating CD8+ T cells in the TG express
their full cytotoxic armor, destruction of neurons is only
seen rarely in mice (Decman et al. 2005; Esaki et al. 2010)
and humans (Theil et al. 2003a). In fact, mice deficient in
CD8+ T cells are not only unable to control HSV-1 infec-
tions but also exhibit more apoptotic neurons (Simmons and
Tscharke 1992). Therefore, the major function of local
CD8+ T cells appears to be secretion of anti-viral cytokines
like IFN-γ or TNF-α. It has been demonstrated that IFN-γ
is involved in suppression of viral replication immediately
after reactivation (Cantin et al. 1999), exerts a function
which inhibits ICP0 expression, and further blocks reacti-
vation at a late stage (Decman et al. 2005). A cross-
regulation between ICP0, a potent transactivator of gene
expression with several functions in promoting viral lytic
gene expression, and IFN-γ has been proposed. ICP0 was
demonstrated to be necessary to stop IFN-dependent innate
host response from repressing HSV-1 (Halford et al. 2006).
Moreover, CD8+ T cells present in latently infected TG
actually do release their cytolytic granules. It has been
shown that Granzyme B, which normally initiates apoptosis
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by cleavage of caspase 3, is also able to degrade ICP4, a
viral IE protein required for efficient viral gene expression
(Knickelbein et al. 2008).

Evidently, there need to be mechanisms to prevent CD8-
mediated cytotoxic injury of infected neurons. One possi-
bility might be the expression of the inhibitory receptors
CD94/NKG2a on T cells that could interact with Qa1 on
neurons as it has been shown in the mouse model (Suvas et
al. 2006; Wojtasiak et al. 2004). Also, in humans, TG
expression of CD94/NKG2a on infiltrating T cells was
noted (van Velzen et al. 2009).

Co-infection of human TG with other viruses

One major difference between animal models and human
HSV-1 infection is that animals are exclusively infected by
HSV-1, whereas human TG can be infected by different
viruses like the herpesviruses HSV-2, VZV, and HHV-6
(Pevenstein et al. 1999; Liedtke et al. 1993; Theil et al.
2004; Hüfner et al. 2007). It has been shown that HSV-1
and VZV can even co-occur in one neuron (Theil et al.
2003b). So, which virus is actually causing the immune
infiltration?

It has been shown that the infiltrating T cells only occur
in latently HSV-1-infected TG and do not co-occur with
VZV (Theil et al. 2003a). Additionally, in a study using
nested polymerase chain reaction (PCR) for HSV-1, VZV,
and HHV-6 (Hüfner et al. 2007) only in ganglia testing
positive for HSV-1, significant increases in T cell counts
were found. T cell clusters were absent in dorsal root ganglia
of human cadavers negative for LAT by nested PCR (Hüfner
et al. 2006). T cells in human TG have been reported to be
localized mainly in the maxillary and mandibular division of
the TG where they co-localize with LAT+ neurons (Hüfner
et al. 2009). Analogously, in the mouse model after ocular
infection, most T cells are located in the ophthalmic division
of the TG (Khanna et al. 2003). This indicates HSV-1 as
trigger for the immune infiltration. Furthermore, Arbusow et
al. (2010) demonstrated a correlation between the expres-
sion levels of CD8 and LAT. Probably, the most convincing
argument is that T cell lines derived from human TG latently
infected with HSV-1 and VZV only exhibited reactivity
towards HSV-1 and not VZV proteins (Verjans et al. 2007).

Taken together, there is strong evidence that the tissue-
infiltrating T cells in the human TG are actually recruited by
HSV-1 and not by another virus.

Control of latency by the virus

During HSV-1 latency in sensory neurons, the only abun-
dantly expressed viral gene products are the LATs. This
holds true for the mouse model of infection (Stevens et al.

1987) as well as humans (Croen et al. 1987). The 2-kb LAT
stable intron, which accumulates to high levels in the neu-
ronal nuclei, is spliced from a primary 8.3–8.5 kb polyade-
nylated transcript. Many functions in the establishment and
maintenance of latency as well as in reactivation have been
attributed to LAT as the only readily detectable transcript in
latently infected neurons. This has been a field of extensive
research and raised much controversy. Studies investigating
the role of LAT or other viral genes in establishment or
control of latency have been carried out in small animal
models of infection or cell culture as this is not feasible with
human samples. Most studies suggest that LAT plays a role
in latency but is not essential, as most LAT- mutants still
establish latency and can also reactivate (Perng et al. 1994;
Chen et al. 1997). However, LAT- mutants show decreased
numbers of latently infected neurons in TG of mice
(Thompson and Sawtell 1997; Devi-Rao et al. 1994), and
LAT also represses viral lytic transcripts during latency
(Chen et al. 1997). A more crucial role for LAT in promot-
ing spontaneous reactivation in rabbits (Perng et al. 1994;
Hill et al. 1990) than in mice (Margolis et al. 2007a) has
been shown. This may be due to the fact that spontaneous
reactivation is a much more common event in rabbits than in
mice. In explant cultures of mouse TG, however, LAT−

mutants show a significantly decreased reactivation rate
(Carr et al. 1998). The ability of LAT to promote spontane-
ous reactivation has been mapped to the first 1.5 kb of the
primary transcript (Perng et al. 1996). It is possible that the
effect of LAT on the latency–reactivation cycle may be
underestimated in animal models with a shorter lifespan
and therefore a shorter latency period than in humans. In
mice, it has been established that some sensory neurons
containing HSV-1 DNA do not express LAT to detectable
levels (Mehta et al. 1995; Chen et al. 2002b). In a recent
study using LAT in situ hybridization combined with laser
microdissection and quantitative PCR on human TG sec-
tions, no HSV-1 DNA containing neurons without LAT
expression could be detected (Held et al. 2011). In this
study, most LAT+ neurons were also not surrounded by
CD8+ T cells. This proposes a more effective control of
viral latency by viral or cellular factors in humans than in
animal models.

One possible effect of LAT in maintaining or establishing
latency could be that LAT expression is associated with
increased accumulation of unspliced ICP0 transcripts (Chen
et al. 2002a; Maillet et al. 2006). ICP0 is required for
complete reactivation from latency with infectious virus
production (Halford and Schaffer 2001; Thompson and
Sawtell 2006). A counteractive role on viral IE-gene prod-
ucts has also been proposed for some of the recently de-
scribed 16 viral microRNAs (miRNA), short RNA
molecules of about 22 nucleotides in length. Most of these
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miRNAs are encoded by the primary LAT transcript or by
genomic regions in close proximity to LAT (Cui et al. 2006;
Umbach et al. 2008, 2009; Jurak et al. 2010). These miR-
NAs are differentially expressed in productive versus latent
infection in mice and humans (Umbach et al. 2008, 2009;
Jurak et al. 2010; Held et al. 2011). The miR-H2-3p and
miR-H6 were shown to reduce ICP0 and ICP4 expression in
vitro (Umbach et al. 2008), respectively. However, HSV-1
mutants with reduced expression of the LAT-derived miR-
NAs as well as miR-H6 were able to establish and maintain
latent infections in mice (Kramer et al. 2011). It is not yet
clear whether viral miRNAs as well as LAT might play a
more crucial role in humans. Two more small RNAs have
been mapped to the LAT region: sRNA1 and sRNA2, both
exhibiting functions in inhibiting productive infection and
apoptosis in mice (Perng and Jones 2010).

Latent HSV-1 DNA is in a heterochromatic state with
histone marks typical for a repressed chromatin structure
(Knipe and Cliffe 2008). The enhanced assembly of hetero-
chromatin in promoters of lytic genes correlates with the
presence of LAT (Wang et al. 2005b). It was therefore
proposed that LAT silences viral lytic genes by inducing
heterochromatin formation in essential regions of the viral
genome.

In mice, LAT further plays a role in cell tropism of HSV-
1. A small part of the LAT 5′ exon defines which neuronal
cell type becomes latently infected (Imai et al. 2009). HSV-1
LAT was mostly detected in A5+ neurons whereas HSV-2
LAT mostly occurred in KH10+ neurons (Margolis et al.
2007b). This is due to the fact that A5+ neurons are non-
permissive for productive infection by HSV-1 (Bertke et al.
2011).

Moreover, LAT inhibits apoptosis and thereby pro-
motes survival of infected neurons (Perng et al. 2000;
Hamza et al. 2007). Correct splicing of the 2 kb LAT is
necessary for this function (Kang et al. 2003). LAT inhibits
caspase 8- and caspase 9-induced apoptosis (Henderson et
al. 2002) as well as caspase 3 activation by Granzyme B
released from CD8+ T cells (Jiang et al. 2011). Another
function of LAT in promoting neuronal survival is the in-
duction of T cell exhaustion in latently infected mouse TG
(Allen et al. 2011).

Regarding the properties of LAT, one might speculate
that LAT restricts spontaneous reactivation by reducing
expression of specific genes like ICP0 or ICP4, thereby
ensuring that a short interruption in the repression of
viral genes does not lead to reactivation. The anti-
apoptotic function of LAT might be very important
during all steps of latency when expression of other
viral anti-apoptotic genes is limited or absent. Without
inhibition of apoptosis, latently infected neurons could
die in response to viral infection and thereby reduce the
number of latent HSV-1 genomes.

Control of latency by cellular factors

Cellular factors also have been implied in the control and
establishment of HSV-1 latency. Differential distribution of
proteins in neuronal and non-neuronal cells like HCF1, as
well as differential regulation of IE and LAT promoters by
neuronal specific factors have been described (reviewed in
(Perng and Jones 2010)). Furthermore, sensory neurons in
contrast to other cells are fully differentiated cells which do
not divide anymore and therefore provide a completely
different environment to HSV-1. Very recently, it has been
shown in mice that neurons positive for the marker A5 are
not permissive for productive but latent HSV-1 infection
(Bertke et al. 2011), directly showing differential regulation
of the viral life cycle in a subset of neurons. Whether only
specific neuronal cell types in human TG become infected
also remains to be elucidated.

Triggers for reactivation

An important difference in HSV-1 latency in mice and
humans is the frequency of spontaneous reactivation. This
may be due to the fact that the HSV-1 protein ICP47 has a
lower affinity for mouse TAP1/2 than for human TAP1/2
(Orr et al. 2007). Therefore, HSV-1 can less efficiently
block MHC class I presentation of antigens in mice, which
leads to a more efficient immune control of the virus.
Actually, in mice, most TG resident CD8+ T cells are spe-
cific for HSV-1 (St Leger et al. 2011). These CD8+ T cells
are able to block viral transcription even at late stages
(Decman et al. 2005). In humans, it seems that a higher
percentage of the local CD8+ T cells are unspecific bystand-
er cells (Verjans et al. 2007), and therefore HSV-1 might be
able to escape from the host immune system more easily
after initiating viral transcription.

The most common trigger for reactivation of latent
HSV-1 is stress, which has been shown to induce reac-
tivation in mice by reducing the number and function-
ality of HSV-1-specific CD8+ T cells (Freeman et al. 2007;
Bonneau 1996). Also, in humans, immunosuppression
caused by stress led to increased reactivation of HSV-2
(Pereira et al. 2003). Glucocorticoids reduce T cell numbers
in TG of mice latently infected with HSV-1 (Himmelein et
al. 2011), regulate gene expression, and induce changes in
the chromatin status (Adcock 2000), thereby possibly acti-
vating viral gene expression. It has also been demonstrated
that the neuronal excitation status influences efficiency of
HSV-1 viral replication in cultured neurons (Zhang et al.
2005): Increased neuronal excitability inhibited viral repli-
cation, whereas decreasing the activity of neurons enhanced
viral replication. Taken together, reactivation of HSV-1
seems to be triggered by signals which lead to an increase
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in transcription activity of the host neuron (Wagner and
Bloom 1997). The molecular mechanism might be
explained by translocation of HCF1 into the nucleus of
stressed neurons. If then, the increased transcription activity
allows VP16 de novo synthesis, activation of α-promoters
could occur. LAT and CD8+ T cells act on repressing further
viral gene expression, but if these control mechanisms are
overrun, limited viral replication takes place. Resulting viral
particles are subsequently transported by anterograde axonal
transport to the neuronal termini. Presumably, as no sensa-
tional loss is associated with repeated reactivation, no or
only limited neuronal death occurs during release of virus.
Apparent lesions are less frequent than short subclinical
HSV reactivations with asymptomatic shedding of the virus
as demonstrated by a study on humans (Mark et al. 2008).

Reactivation from human TG is hard to study, as so far no
reactivation event with synthesis of viral proteins could be
observed (Theil et al. 2003a; Derfuss et al. 2007).

Conclusion

We have summarized here the current understanding of the
control mechanisms of HSV-1 latency in humans and small
animal models.

Viral latency is maintained by a number of different
mechanisms including specific neuronal factors and viral
factors like LAT, viral miRNAs, or the epigenetic regulation
of the viral genome. When HSV-1 escapes these control
mechanisms, the local CD8+ T cell response can step in to
prevent full reactivation.

Most knowledge about the function of viral transcripts
and host factors in maintaining latency was gained from
small animal models of HSV-1 infection. It remains to be
elucidated whether the mechanisms learned from animal
models are applicable to HSV-1′s natural host.
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